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We consider, as a case study, the optimization of mixing protocols for a two-
dimensional, piecewise steady, nonlinear flow, the sine flow, for both the advective–
diffusive and purely advective cases. We use the mix-norm as the cost function to be
minimized by the optimization procedure. We show that the cost function possesses a
complex structure of local minima of nearly the same values and, consequently, that
the problem possesses a large number of sub-optimal protocols with nearly the same
mixing efficiency as the optimal protocol. We present a computationally efficient
optimization procedure able to find a sub-optimal protocol through a sequence of
short-time-horizon optimizations. We show that short-time-horizon optimal mixing
protocols, although sub-optimal, are both feasible and efficient at mixing flows with
and without diffusion. We also show that these optimized protocols can be derived, at
lower computational cost, for purely advective flows and successfully transported to
advective–diffusive flows with small molecular diffusivity. We characterize our results
by discussing the asymptotic properties of the optimized protocols both in the pure
advection and in the advection–diffusion cases. In particular, we quantify the mixing
efficiency of the optimized protocols using the Lyapunov exponents and Poincaré
sections for the pure advection case, and the eigenvalue–eigenfunction spectrum for
the advection–diffusion case. Our results indicate that the optimization over very
short-time horizons could in principle be used as an on-line procedure for enhancing
mixing in laboratory experiments, and in future engineering applications.

1. Introduction
The optimization and control of fluid mixing is highly relevant to modern and

future industrial applications, because the demands for improving the efficiency
of mixing processes and controlling the homogeneity of mixtures are becoming
increasingly severe. A better understanding of mixing is crucial for improving old and
designing novel mixing devices that are able to reduce residence mixing times, improve
mixing homogeneity and allow the processing of new materials highly sensitive to
concentration and temperature gradients.

There are several potential techniques for enhancing mixing. They range from
off-line optimization and passive control to on-line optimization and feedback
control. On the one hand, off-line optimization and passive control are the most
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robust techniques, but they are strongly dependent on process, geometry and
application. On the other hand, on-line optimization and feedback control are hard
to design and require a deep understanding of the mixing process, but they are
versatile and adaptable to different processes, geometries and applications.

Over the past two decades, mixing protocols have been devised to induce chaotic
advection, also referred to as Lagrangian chaos or laminar chaos, in laminar flows
when the mixing properties of turbulence cannot be leveraged. More recently, the
swiftly developing area of microfluidic technology (Tay 2002; Tabeling 2005) has
introduced the new challenge of mixing laminar flows in micro-channels where the
characteristic length of the channel is often comparable to the characteristic diffusion
length of the fluids. Several studies have recently been published on this subject, both
from the theoretical–numerical and the experimental standpoints (see e.g. Stremler,
Haselton & Aref 2004; Tabeling et al. 2004; Ottino & Wiggins 2004a, 2004b, and
references cited therein).

Most of the research activity in the mixing community has focused on the analysis
of the mixing efficiency of stirring protocols applied to purely advective flows. The
types of flows considered range from idealized flow models, used as computationally
convenient playgrounds for achieving a basic understanding of the advective mixing
mechanisms (Rom-Kedar, Leonard & Wiggins 1990; Beigie, Leonard & Wiggins
1994; Hobbs, Alvarez & Muzzio 1997), to industrially relevant flows, such as those
arising in stirred vessels (Lamberto et al. 1996; Harvey III, Wood & Leng 1997;
Alvarez et al. 2002b; Rice et al. 2006) and motionless mixers (Zalc, Szalai & Muzzio
2003; Hobbs & Muzzio 1998; Metcalfe et al. 2005; Xia et al. 2006). These studies
were complemented by carefully designed numerical and laboratory experiments of
two- and three-dimensional Stokes flows, such as the flow between two eccentric
rotating cylinders, the flow in a rectangular cavity driven by sliding walls (Ottino
1989), and the flow in a cylindrical vessel stirred by tilted (Fountain, Khakhar &
Ottino 1997) or eccentric disks (Alvarez, Arratia & Muzzio 2002a). The main result
of these studies can be summarized by saying that optimal stirring protocols are
those which maximize the amount of chaos in the flow domain, i.e. maximize the
measure of the set of trajectories possessing positive maximal Lyapunov exponent.
Consequently, the presence of regions of regular motion, known as islands in two-
dimensional flows and invariant tori in three-dimensional flows, should be avoided, as
they form a barrier to efficient mixing. Unfortunately, besides a handful of abstract
systems which are weakly related to fluid mixing (see e.g. the class of models analysed
in Wojtkowski 1981), there is no simple way of establishing a priori the shape and the
size of the regions of regular motion which are associated with a prescribed stirring
protocol.

Along this line of research, a comparatively smaller number of studies focus on
optimizing or controlling mixing (Franjione & Ottino 1992; Sharma & Gupte 1997;
D’Alessandro, Dahleh & Mezić 1999; Boyland, Aref & Stremler 2000; Vikhansky
2002a, b; Balasuriya 2005; Thiffeault & Finn 2006). The results obtained, however,
differ, and are hard to compare because they strongly depend on the definition of
mixing efficiency and mixing quality chosen by the different authors. For instance,
D’Alessandro et al. (1999) quantify mixing quality in terms of measure-theoretical
entropy. The authors used this quantity to identify the most effective protocol out
of a generic sequence of orthogonal shear flows on a two-dimensional torus. While
theoretically satisfactory, this definition is hardly suitable for engineering applications.
In other theoretical–numerical studies, which considered more realistic flows, the
mixing efficiency of a given protocol was assessed in terms of the stretch factor of
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the passive interfaces evolving under the action of the protocol (see e.g. Vikhansky
2002a, b). Balasuriya (2005) considered the mixing enhancement induced by periodic
perturbations of two- and three-dimensional axis-symmetric integrable flows as a
function of the frequency of the perturbation. In this case, mixing enhancement is
quantified through the mass flux across the separatrix associated with the unperturbed
system: such flux is clearly zero in the unperturbed cases. A first attempt at feedback
control mixing has been recently presented by Noack et al. (2004). In this work, the
authors developed a variational approach for controlling the dynamics of a vortex,
providing a low-frequency modulation of the vortex motion and quantifying mixing
performances by the use of Poincaré maps. Note that all of the aforementioned
optimization and control studies use kinematics-based diagnostics to quantify
mixing efficiency. More recently, Mathew et al. (2007) considered the problem of
optimally controlling mixing in a Stokes flow by modulating a finite set of spatially
distributed force fields. The authors derived the first-order necessary conditions
for optimality and obtained a sub-optimal controller using a conjugate gradient
algorithm.

The scope of this study is to investigate the feasibility, efficiency and transportability
of short-time-horizon optimal mixing protocols. We are particularly interested in
assessing the feasibility and efficiency of such protocols when the optimization horizon
is short with respect to the characteristic advection time of the system. A positive
assessment could have important implications for engineering applications since on-
line optimization could be effectively integrated in novel mixing devices. Furthermore,
our study analyses whether short-time-horizon optimal protocols can be designed and
tested on purely advective flows, and subsequently transported to advective–diffusive
flows, without a substantial deterioration of their mixing efficiency. To the best of our
knowledge, there are no studies published investigating these types of protocols.

In order to characterize the mixing efficiency of short-time-horizon optimal
mixing protocols when applied to purely advective or advective–diffusive systems,
it is necessary to introduce diagnostics able to quantify the quality of mixing on
either system. The typical indicators of the quality of mixing, i.e. variance decay
exponent and kinematics-based diagnostics, are unhelpful in our analysis because
they cannot be used interchangeably for purely advective and advective–diffusive
systems. On the one hand, the scalar variance is conserved in diffusionless systems,
independently of the efficiency of the advective mixing. On the other hand, in
advecting–diffusing flows, the interfaces between fluids cannot be clearly identified
due to the smearing action of diffusion and, consequently, all the diagnostics based on
the dynamics of local and global deformation of passive interfaces are bound to be
imprecise.

Recently, Mathew et al. (2005) proposed a global indicator of the degree of
mixing, the mix-norm, which can be used to characterize mixing in flows with
or without molecular diffusion. The mix-norm is essentially an average multiscale
measure of the scalar variance over different coarse grainings of the mixing domain,
obtained by first averaging the concentration field over measure elements of a
characteristic length scale centred at a generic point of the mixing domain, and
then taking the average of the square of this quantity with respect to the space
coordinates.

In this study, we use the mix-norm, we believe for the first time, to quantify the
mixing efficiency of protocols when applied to purely advective or advective–diffusive
systems. We search for optimal protocols that minimize the mix-norm out of a pool of
admissible protocols for a test flow, the sine flow (Liu, Muzzio & Peskin 1994a). The
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sine flow has been widely used as a computationally convenient model for analysing
chaotic advection induced by aperiodic protocols (Liu et al. 1994a), the interaction
between the advective and diffusive mixing mechanisms (Giona et al. 2004b; Thiffeault,
Doering & Gibbon 2004) and the evolution of advecting–diffusing–reacting systems
(see e.g. Giona, Cerbelli & Adrover 2002).

The third issue we investigate in this study is the transportability of a protocol,
optimized in the absence of diffusion, from purely advective to advective–diffusive
systems. It is not trivial to answer the question as to whether optimal protocols
designed for purely advective flows also perform best in the presence of diffusion,
however small. This question is important because diffusionless systems are physically
unattainable. Some researchers tend to answer this question by saying that if a
flow field provides efficient advective mixing and molecular diffusion is small, then
the action of molecular diffusion can be superimposed an the advective flow, and
therefore the assessment of mixing optimality obtained from the kinematic analysis
can be relied on. In general, however, this is not true. Direct numerical simulations
of advecting–diffusing scalar fields in two- and three-dimensional flows show that the
interaction between chaotic advection and molecular diffusion can give rise to a rich
variety of phenomenological behaviours such as the localization of partially mixed
structures within regions of regular motion in the mixing space (Giona, Cerbelli
& Vitacolonna 2004a). For small diffusivities, these phenomenological behaviours
are characterized by exponential scaling laws, where the value of the exponent
is an indicator of qualitatively different transport mechanisms (see e.g. Toussaint,
Carriere & Raynal 1995; Toussaint et al. 2000; Giona et al. 2004b; Cerbelli et al.
2004). In practice, in partially mixing flows, the complex interaction between
chaotic advection and diffusion is essentially related to the possible presence of
regions of regular motion, i.e. islands or invariant tori, intermingled with regions
of chaotic motion. In these cases, the overall mixing efficiency depends on how the
chaotic region mediates the transport between regions of regular motion (Giona
et al. 2004b). Note that the regions of regular motion are not detected by global
indicators of chaos such as Lyapunov exponents or topological entropy. In fact,
these indicators are ultimately based on local stretch factors and are therefore
dominated by the exponential dynamics of deformation occurring in the chaotic
region.

The remainder of this article is organized as follows: In § 2, we illustrate the sine
flow and the admissible protocols. We define a protocol as optimal if it minimizes the
mix-norm of the scalar field at a given final time. We determine an optimal protocol
by performing an exhaustive search between all possible protocols. We perform the
optimizations over horizons ranging from very small to large time intervals, in order
to characterize the mixing efficiency of very short-horizon mixing protocols. In § 3, the
results of the short-time-horizon optimization are discussed. Optimal protocols derived
for diffusionless flows are compared with optimal protocols derived for advection–
diffusion flows. Furthermore, the transportability of optimal protocols derived for
diffusionless flows to advection–diffusion flows is discussed. In § 4, we analyse the
kinematic and functional properties of the short-horizon optimal protocols and their
fine temporal structure. In particular, we observe that the results of the kinematics-
based optimization can be used with confidence even in the presence of a small
molecular diffusivity if the repeated application of the protocol optimized over a
short time horizon, henceforth referred to as the periodic continuation of the protocol,
induces a globally chaotic flow. Concluding remarks and possible developments of
the approach presented are discussed in § 5.
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2. Statement of the problem and optimization strategy
2.1. Flow system and admissible protocols

We use the sine flow (Liu et al. 1994a) as a test flow system to derive and compare
optimal protocols acting on purely advecting and advecting–diffusing scalar fields.
The sine flow is defined as a two-dimensional, incompressible fluid system stirred by
the composition of two blinking, piecewise steady, nonlinear velocity fields,

v0(x, y) = (sin(2πy), 0), v1(x, y) = (0, sin(2πx)), (2.1)

acting on all points of a unit square domain I 2 = [0, 1] × [0, 1] equipped with periodic
boundary conditions which identify the opposite edges of the square. Note that the
flow domain is topologically equivalent to a two-dimensional torus, �2.

It is physically meaningful to blink the velocity fields only if we assume flow
conditions for which the inertial effects are negligible with respect to the viscous
effects. Liu et al. (1994b) have characterized the impact of the inertial effects on the
mixing properties of laminar chaotic flows. They considered a two-dimensional cavity
flow in which the chaotic flow is obtained by alternating the motion of the upper
and lower walls of the cavity. Liu et al. (1994b) observed that for Reynolds numbers
less than one, the kinematic of mixing can be reproduced numerically by blinking
the steady-state solutions to the Stokes equations corresponding to the motion of the
upper or lower walls of the cavity. They showed that the kinematics reproduced by
blinking the two solutions is a sufficiently accurate approximation of the kinematics
obtained by solving the corresponding continuous-time problem governed by the
Navier–Stokes equations.

Under the above assumption, we stir the sine flow system with a set of admissible
protocols defined as follows. Let T be the overall time interval over which the
optimization is performed, and let τ = T/N be a switching time, where N is a positive
integer. An admissible protocol is a string {α1, α2, . . . , αN} which prescribes the stirring
velocity field as a sequence of N instantaneously switching flows {vα1

, vα2
, . . . , vαN

},
each acting over a time τ , where αi can be either ‘0’ or ‘1’ for i = 1, 2, . . . , N . Note
that all protocols possess the same kinetic energy.

Although defined on a boundary-less manifold, the two-dimensional torus �2, the
sine flow represents a bounded closed flow system, since the flow domain can be
embedded in a finite-size ball. No leakage of fluid can occur because there are no
boundaries. Consequently, the evolution of a scalar field shares the same properties
as the evolution of an incompressible fluid enclosed between bounded impermeable
walls (Giona et al. 2004b).

2.2. Solution of the advection–diffusion problem

Advection–diffusion of a scalar, or concentration, field φ(x, y, t) is governed by the
dimensionless equation

∂φ

∂t
= −v · ∇φ +

1

Pe
�φ, (2.2)

where v(x, y, t) = vαi
(x, y)/U for (i − 1)τ � t < iτ (i = 1, 2, . . . , N) is a solenoidal

velocity field, i.e. ∇ · v = 0, and � represents the Laplacian operator. The Péclet number
is defined as Pe = UL/D, where U , L, D are the characteristic velocity, characteristic
length, and molecular diffusivity, respectively. As a characteristic velocity U and
length L, we choose the maximum absolute value of the stirring velocity field and the
side of the square domain, respectively. We also define the characteristic advection
time as TK =L/U and the characteristic diffusion time as TD =L2/D. Note that the
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Péclet number can also be expressed as Pe = TD/TK . Hence, the role of fluid motion
increases with increasing Pe.

The advection–diffusion equation (2.2) can be conveniently solved using a spectral
algorithm. Let us expand the scalar field in terms of the Fourier orthonormal basis, i.e.

φ(x, y, t) =
∑
k∈�2

Φk(t) e2iπ k·x, (2.3)

where k = (m, n) ∈ �2 is the wavenumber vector (�2 is the set of points of the plane
possessing positive, null, or negative integer coordinates), x = (x, y) is the position
vector, and i =

√
−1, respectively. Since the scalar field is real-valued, the coefficients

of the Fourier expansion, Φk(t), always appear in complex-conjugate pairs. Using a
Galerkin projection scheme, we obtain the following infinite-dimensional system of
ordinary differential equations for the Fourier coefficients Φk(t) = Φm,n(t),

dΦm,n(t)

dt
= −4π2(m2 + n2)

Pe
Φm,n(t) − πm(Φm,n−1(t) − Φm,n+1(t)), ∀(m, n) ∈ �2, (2.4)

for the time intervals when the stirring flow v0 = (sin(2πy), 0) is active, and the
infinite-dimensional system of ordinary differential equations

dΦm,n(t)

dt
= −4π2(m2 + n2)

Pe
Φm,n(t) − πn(Φm−1,n(t) − Φm+1,n(t)), ∀(m, n) ∈ �2, (2.5)

for the time intervals when the stirring flow v1 = (0, sin(2πx)) is active.
The presence of the dissipative Laplacian term in the above equations (first term

on the right-hand side) ensures that a truncated Fourier representation of the scalar
field φ provides an approximated solution to the infinite-dimensional system of
ordinary differential equations (2.4)–(2.5). The validity of the truncated representation
is supported by the fact that the evolution operator associated with the advection–
diffusion equation is compact (Liu & Haller 2004; Cerbelli et al. 2004). Hence, we
consider a finite set of wavenumbers k ∈ [−Nm, Nm]×[−Nm, Nm]. In order to maintain
a good approximation to the solution, the number of modes Nm, which should be
used in each spatial direction, should increase as Pe increases. We use Nm =50 for
Pe = 103 and Pe = 5 × 103, Nm = 70 for Pe =104, and Nm = 120 for Pe = 5 × 104. The
initial condition specifying the Cauchy problem for equations (2.4)–(2.5) is obtained
by computing the Fourier coefficients of the initial scalar field φ(x, y, 0). The time
integration is performed with a Runge–Kutta fourth-order algorithm.

2.3. Solution of the pure advection problem

Pure advection of a scalar field φ(x, y, t) is governed by the dimensionless equation

∂φ

∂t
= −v · ∇φ. (2.6)

This equation is obtained from (2.2) by removing the diffusive term �φ/Pe. We
identify this case with Pe = ∞. The Lagrangian form of the above equation is

Dφ

Dt
= 0, (2.7)

where D/Dt is the material derivative. From this equation, it follows that the
concentration is conserved in time, i.e. the concentration initially associated with
a fluid particle remains constant as the particle is advected through the fluid by
the velocity field v. Consequently, the time evolution of the concentration field in
the absence of diffusion can be easily obtained from the time evolution of the fluid
particles.
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The trajectory (X(t), Y (t)) traced by a fluid particle initially located at (X0, Y0)
under the action of the velocity field v0 can be obtained integrating the following set
of ordinary differential equations

dX

dt
= sin(2πY ),

dY

dt
= 0. (2.8)

Hence, the position (X1, Y1) of the particle after one switching time τ is{
X1 = X(τ ) = X0 + τ sin(2πY0) mod 1,

Y1 = Y (τ ) = Y0 mod 1.
(2.9)

Note that we force the solution to evolve on a two-dimensional torus by taking the
solution module one. Similarly, the trajectory (X(t), Y (t)) traced by a fluid particle
initially located at (X1, Y1) under the action of the velocity field v1 can be obtained
by integrating the following set of ordinary differential equations:

dX

dt
= 0,

dY

dt
= sin(2πX). (2.10)

The position (X2, Y2) of the particle at time t = 2τ is{
X2 = X(2τ ) = X1 mod 1,

Y2 = Y (2τ ) = Y1 + τ sin(2πX1) mod 1,
(2.11)

and so on. Therefore the stroboscopic kinematics of the fluid particle induced by
a given protocol {α1, α2, . . . , αN}, which prescribes the stirring velocity field as a
sequence of N instantaneously switching flows {vα1

, vα2
, . . . , vαN

}, each acting over a
time τ , is given by the map

(
Xk

Yk

)
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
Xk−1 + τ sin(2πYk−1)

Yk−1

)
mod 1 if αk = 0,

(
Xk−1

Yk−1 + τ sin(2πXk−1)

)
mod 1 if αk = 1,

(2.12)

where k = 1, 2, . . . , N .
The solution to (2.6) can be easily obtained by inverting the stroboscopic map

(2.12) describing the kinematics of the fluid particles. Since there is no diffusion, the
initial concentration associated with a fluid particle is conserved with time. Hence,
the solution to (2.6) at the point (x, y) and time t = kτ is

φ(x, y, kτ ) = φ(X0, Y0, 0), k = 1, 2, . . . , N, (2.13)

where the position (X0, Y0) is obtained by setting (Xk, Yk) = (x, y) and using the map

(
Xk−1

Yk−1

)
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
Xk − τ sin(2πYk)

Yk

)
mod 1 if αk = 0,

(
Xk

Yk − τ sin(2πXk)

)
mod 1 if αk = 1,

(2.14)

to track the particle backward in time to its initial position.
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2.4. Definition and computation of the mix-norm

As discussed in the introduction, the mix-norm (Mathew et al. 2005) provides a
useful tool for quantifying the degree of mixing of an evolving scalar field over the
entire range of Péclet numbers, including the value Pe = ∞, which represents a purely
advective process.

The mix-norm can be defined as follows: Given a concentration field φ(x, t) on a
two-dimensional torus �2, the average of the concentration field φ(x, t) over a ball
Bs( y) = {x | ‖x − y‖ � s} of radius s centred at y, is

d( y, s, t) =
1

s

∫
Bs ( y)

φ(x, t) dx. (2.15)

Then the mix-norm µφ is the square root of the average of d2( y, s, t) over all possible
ball sizes and over the flow domain �2, i.e.

µφ(t) =

√∫
�2

(∫ 1

0

d2( y, s, t) ds

)
d y. (2.16)

It can be shown (Mathew et al. 2005) that this definition of the mix-norm is equivalent
to the Sobolev norm of order −1/2 of φ(x, t).

The mix-norm quantifies the mixedness of a concentration field both in purely
advective and in advective–diffusive systems. In a diffusionless system, i.e. a system
where the evolution of the concentration field is governed by (2.6), it can be shown
(Mathew et al. 2005) that a stirring protocol mixes the initial concentration field in the
measure-theoretical sense (Arnold & Avez 1989) if the mix-norm of φ(x, t), evolved
by (2.6), converges to zero for t → ∞ for any initial square summable distribution.
Conversely, in a system with diffusion, i.e. a system where the evolution of the
concentration field is governed by (2.2), the mix-norm provides a quantification of
mixedness alternative, but qualitatively equivalent, to the variance of the concentration
field ‖φ − φ‖L2 (t), defined by

‖φ − φ‖L2 (t) =

√∫
�2

(φ(x, t) − φ(t))2 dx, (2.17)

where

φ(t) =

∫
�2

φ(x, t) dx. (2.18)

Note that the mix-norm and the scalar variance share the same time exponential
scaling.

In systems with diffusion there is no particular advantage in using the mix-norm
as an indicator of the degree of mixedness with respect to other more classical
indicators, such as the variance of the concentration field ‖φ − φ‖L2 (t). However,
when both advective-diffusive and purely advective systems are considered, the mix-
norm provides, to the best of our knowledge, the sole global indicator of mixedness
grounded on physical principles, which is able to quantify on equal footing the
mixedness of these two systems. The reader interested in the general definition and
physical interpretation of this measure of mixing is referred to the work by Mathew
et al. (2005).
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The mix-norm of the scalar field φ(x, t) can be computed as follows (Mathew et al.
2005)

µφ(t) =

[∑
k∈�2

1√
1 + 4π2||k||2

|Φk(t)|2
]1/2

, (2.19)

where Φk are the Fourier coefficients of the concentration field φ. Note that in
the above expression less and less weight is given to the high-frequency harmonics.
Hence the objective of an efficient mixing protocol is to shift, as quickly as possible,
the frequency representation of any given initial scalar field to higher and higher
frequencies.

The computation of the time evolution of the mix-norm is carried out using different
algorithms in purely advecting and advecting–diffusing flows. On the one hand, in the
case of finite diffusivity, the spectral representation of the scalar field (2.3) is evolved in
time by (2.4) and (2.5). Hence, the mix-norm can be directly computed by substituting
the Fourier coefficients Φk of the concentration field into (2.19). On the other hand, in
the diffusionless case, the mix-norm at the end of each switching time τ is obtained by
computing the Fourier coefficients Φk of the scalar field φ(x, y, kτ ), k = 1, 2, . . . , N ,
by means of a Fast Fourier Transform (FFT), and substituting them into (2.19). In the
numerical implementation of this algorithm, we discretized the domain at time t = kτ ,
k = 1, 2, . . . , N , with a grid of size 2048 × 2048 and constructed the concentration
field φ(x, y, kτ ) using equation (2.13) and the map (2.14). The size of the grid has
been chosen sufficiently large to ensure that the computed values of the mix-norm
are independent of the grid size.

2.5. Complexity of the optimization problem

For a given value of the final optimization time T and a switching time τ , the set
of admissible protocols corresponds to all the possible strings {αk}k =1,2,...,N (with
N = T/τ ), where αk can assume any of the two symbols ‘0’ and ‘1’. The set of
all admissible protocols possesses the structure of a binary tree, and therefore its
cardinality is equal to 2N . Leveraging the homeomorphism

H(x) =

∞∑
k=1

αk/2
k (2.20)

between the real interval [0, 1] and the strings made by the sequences {αk}k=1,2,...,N plus
an infinite sequence of ‘0s’, we can establish a bi-univocal correspondence between a
set of stirring protocols {αk}k=1,2,...,N and a set of rational numbers xα =

∑N

k=1 αk/2
k .

This correspondence allows us to represent the protocols with a finite ordered set
of rational points in the interval [0, 1]. In this representation the point xα = 0
corresponds to the protocol given by the steady flow v0 at any time 0 � t � T , whereas

the point xα =
∑N

k=1 1/2k , closest to the right extreme of the interval, corresponds
to the protocol given by the steady flow v1 at any time 0 � t � T . Furthermore, if
α(1) = {α(1)

1 , α
(1)
2 , . . . , α

(1)
N } and α(2) = {α(2)

1 , α
(2)
2 , . . . , α

(2)
N } are any given pair of protocols,

then the distance function

d
(
α(1), α(2)

)
=

N∑
k=1

∣∣α(1)
k − α

(2)
k

∣∣/2k (2.21)

establishes a well-defined metric on this set of points (Devaney 1989). Hence,
representative points that are close to each other are associated with protocols
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Figure 1. Mix-norm values µφ at a final time T = 4 associated with the 210 admissible
protocols operating with switching time τ =0.4. (a) Pure advection case (Pe = ∞),
(b) advection–diffusion case at Pe =104.

which share a large portion of the sequence. This representation allows us to visualize
the complexity of the optimization problem.

The optimal protocol is defined as the protocol, among all admissible protocols,
which minimizes the mix-norm at final time T . Figure 1 shows the values of the
mix-norm at the final time T = 4, for all the admissible protocols with switching time
τ = 0.4 for (a) the pure advection problem, and (b) the advection–diffusion problem
at Pe = 104, respectively. In both cases, the initial condition for the scalar field φ is

φ(x, y, 0) =

{
1 for 0 � x < 1/2, 0 � y < 1,

−1 for 1/2 � x < 1, 0 � y < 1,
(2.22)

which represents a completely segregated initial mixture. Throughout this article,
we exclusively use the above φ(x, y, 0) as the initial condition for the optimization
problem.

It is evident from figure 1 that the cost function possesses a complex structure
of local minima both in (a) purely advective and (b) advective–diffusive flows. This
complex structure makes common optimization strategies unsuitable for this specific
problem. However, it is also evident from figure 1 that there are several local minima
with values of the mix-norm nearly equal to the value associated with the absolute
minimum of the cost function. The question we asked ourselves is the following: Is it
worth searching for the absolute minimum, i.e. for the optimal protocol? Our answer
to this question is no. The optimization procedure to find the optimal protocol is
bound to be computationally expensive, and the mixing efficiency of the optimal
protocol is bound to be nearly as good as the mixing efficiency of a sub-optimal
protocol. Since the goal of this study is to provide an optimization procedure for



Short-horizon optimal mixing protocols 209

engineering applications, we propose finding a sub-optimal protocol with a sequence
of short-time-horizon optimizations, which are computationally efficient.

3. Optimization strategy and results
3.1. Optimization strategy

Given a final optimization time T , a switching time τ = T/N and an integer ν, a sub-
multiple of N , we define the optimization time horizon as τν. The parameter ν, the
switching time horizon, represents the number of switching times needed to reach the
horizon, while the parameter m =N/ν represents the total number of optimizations
to be performed to reach the final time T . The definition of time horizon as the
product of the parameters τ and ν is necessary because τ and ν play two different
roles in the optimization strategy.

In order to make the optimization procedure physically meaningful, we define the
time horizon in terms of the characteristic convective time TK of the system. We
define as very short and short time optimization horizons the horizons for which
0.1TK � ντ � 0.2TK and 0.2TK <ντ � 0.4TK , respectively.

The meaning of terms ‘very short’ and ‘short’ is related to the mixing properties of
the classical sine-flow, where the stirring protocol is purely periodic. A ‘very short’ time
optimization horizon ντ is a time horizon for which the classical sine flow stirred by
a periodic protocol with switching time equal to ντ gives rise to an almost integrable
system, where the chaotic region occupies at most 10% of the domain (see e.g. figure
9a for the case ντ =0.1). A ‘short’ time optimization horizon ντ is a time horizon for
which the classical sine flow gives rise to an almost globally chaotic system, where
the chaotic region occupies at most 90% of the domain (see e.g. Figure 9(b) for the
case ντ = 0.4). Note that time optimization horizons ντ < 0.1TK are not appealing for
practical implementations of the optimization procedure because they imply a far-
too-frequent analysis of the concentration field, which is computationally intensive. In
other words, in engineering applications the computational time necessary to analyse
the concentration field should be small compared with the time optimization horizon
chosen.

Given a switching time τ and a switching time horizon ν, the optimization procedure
is defined as follows. Starting at time t = 0, all of the 2ν sub-protocols of the type
{α1, α2, . . . , αν} are considered, and the solutions to the advection–diffusion or pure
advection equations are computed in parallel for all these sub-protocols from the initial
condition φ(x, y, 0) up to time t = ντ . The mix-norm of each solution φ(x, y, ντ ) is
then computed, and the protocol which produced the solution with the lowest mix-
norm is selected. The procedure is repeated by considering the field φ(x, y, ντ ),
generated by the best performing sub-protocol, as the initial condition for the next
optimization up to time t = 2ντ , and so on, until the final time T =mντ = Nτ is
reached. Therefore, for each choice of the parameters τ and ν, the above procedure
selects a sub-optimal protocol out of m2ν admissible protocols. We call this sub-
optimal protocol a short-time-horizon optimal protocol. This optimization procedure
does not find the optimal protocol by exploring exhaustively all the protocols
admissible for a final optimization time T . On the contrary, it efficiently identifies a
sub-optimal protocol by performing sequentially a direct examination of a very limited
number of protocols at each time optimization horizon until the final optimization
time T is reached.

We can estimate the computational cost of the above optimization procedure in
terms of the total number N of possible switches of the velocity fields. There are 2N



210 L. Cortelezzi, A. Adrover and M. Giona

admissible protocols for a given final optimization time T and a switching time τ .
An exhaustive analysis of all admissible protocols corresponds to the case where the
time optimization horizon is chosen to be T = Nτ , i.e. ν = N . This analysis implies the
solution of 2N advection–diffusion equations (2.2), or the advection equations (2.6), up
to time T =Nτ . A measure of the computational cost is therefore the product of the
number of admissible protocols times the interval of time over which the solution of
equation (2.2), or (2.6), should be computed. It follows that the computational cost of
an exhaustive optimization is Ce =2NNτ , i.e. the cost grows exponentially with N . On
the other hand, the proposed short-time-horizon optimization procedure implies the
solution of only N2ν/ν advection–diffusion equations (2.2), or the advection equations
(2.6), over a time horizon optimization equal to ντ . Hence, the computational cost
of the proposed short-time-horizon optimization is Cs = 2νNτ , i.e. the cost grows
linearly with N . Obviously, the advantage of using the short time horizon optimization
becomes exponentially more significant for higher values of N and smaller values of ν.

One of the scopes of this study is to analyse whether short-time-horizon optimal
protocols can be designed and tested on purely advective flows and, subsequently,
transported to advective-diffusive flows without a substantial deterioration of their
mixing efficiency. In order to perform the proposed analysis, we need to introduce two
types of optimizations: a kinematic-based optimization (KbOpt) and an advection–
diffusion-based optimization (ADbOpt). The common goal of both optimizations
is to select a short-time-horizon optimal protocol using the optimization procedure
described above. The difference between KbOpt and ADbOpt lies in the type of
equations solved while performing the optimization. On the one hand, for a given
value of the switching time τ and the horizon ν, the KbOpt solves N2ν/ν pure
advection equations (2.6) and selects a short-time-horizon optimal protocol αK (τ, ν).
On the other hand, for a given value of τ , ν and Pe, the ADbOpt solves N2ν/ν

advection–diffusion equations (2.2) and selects a short-time-horizon optimal protocol
αD(τ, ν; Pe). In general the protocol αD(τ, ν; Pe) is different for different values of
Pe, making the mixing optimization of advective–diffusive systems computationally
expensive. Consequently, it is highly desirable to design and test a short-time-horizon
optimal protocol αK (τ, ν) for a purely advective system and be able to apply it to
the same system with diffusion, instead of deriving the more expensive protocols
αD(τ, ν; Pe).

3.2. Results

In this section we present evidence of the feasibility, mixing efficiency and
transportability of short-time-horizon optimal protocols for the specific mixing
measure used in this study. The optimized protocols considered, αK (τ, ν) and
αD(τ, ν; Pe), are those obtained via KbOpt and ADbOpt (at Pe= 103, 5×103, 104 and
5 × 104), respectively. We consider primarily these Péclet numbers, since in practical
microflow applications the physical range of Pe values spans the interval [102, 104]
(Tabeling 2005). For example, if the characteristic velocity is U = 0.1 cm s−1 and the
characteristic length is L = 0.01 cm, then Pe= 102 corresponds to a diffusivity of about
10−5 cm2 s−1, while Pe=104 corresponds to a diffusivity of about 10−7 cm2 s−1. Values
of Pe higher than 5 × 104 are unrealistic in microflow systems.

In order to establish the mixing efficiency of the protocols αK (τ, ν) and
αD(τ, ν; Pe), we compare their performance against the performance of the traditional
sine flow protocol, a periodic protocol, defined by the alternating sequence
αP (τ ) = {0, 1, 0, 1, . . .}. In addition, in order to establish the transportability of
protocols αK (τ, ν) to flows with diffusivity, we compare their performance against the
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Figure 2. Time evolution of the mix-norm µφ(t) induced by the protocols αP (τ ), αK (τ, ν)
and αD(τ, ν; Pe) starting from the same initial condition. The protocols αK and αD have been
optimized for the switching time τ = 0.1 and different time switching horizons ν = 1 (a), 2
(b), 4 (c), 8 (d). The line types identify the protocols: αP (dash-dotted), αK (solid) and αD

(dashed). The colours identify the value of Pe: Pe = 104 (red), Pe =5×104 (green) and Pe = ∞
(black).

performance of the protocols αD(τ, ν; Pe) when both are applied to the sine flow with
the same Pe values.

We restrict our study to the final time T =8, and choose as switching times τ =0.1,
0.4 and 0.8 because, for these switching times, the periodic protocol αP (τ ) induces
three well-defined flow structures by the final time T . For the switching time τ =0.1,
the flow is dominated by two islands of regular motion, which occupy the entire flow
domain: see figure 9(a). For the switching time τ = 0.4, the flow is partially mixed. In
this case, four islands of regular motion are surrounded by a chaotic region, which
occupies about 90% of the flow domain: see figure 9(b). Finally, for τ = 0.8, there are
no detectable islands of regular motion, as the chaotic region invades the entire flow
domain. Thus, a lower impact of the protocol optimization is expected in the latter
case.

For the switching time τ =0.1, figure 2 shows the time evolution of the mix-norm
induced by the protocols optimized for ν = 1, 2, 4, 8, which correspond to time horizons
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0.1TK , 0.2TK , 0.4TK and 0.8TK , respectively. The black, green and red dash-dotted
curves show the mixing efficiency of the traditional periodic sine-flow protocol αP (τ )
for the purely advective case and the advective-diffusive cases at Pe= 104 and Pe= 5×
104, respectively. The results for the periodic protocol αP (τ ) are used as a reference
to assess the mixing efficiency of the optimized protocols. The black solid line shows
the mixing efficiency of the protocol αK (τ, ν), obtained using KbOpt, when applied
to the purely advective case, Pe= ∞. This result is used as a reference to assess the
transportability of the protocol αK (τ, ν) from purely advective to advective–diffusive
flows. The green and red solid lines show the mixing efficiency of the protocol αK (τ, ν)
when applied to the advective–diffusive cases at Pe= 104 and Pe= 5×104, respectively.
Finally, the green and red dashed lines show the mixing efficiency of the protocols
αD(τ, ν; Pe), obtained using ADbOpt, at Pe= 104 and Pe= 5 × 104, respectively.

Surprisingly, all protocols αK (τ, ν), optimized for ν = 1, 2, 4, 8, induce nearly the
same time evolution of the mix-norm in the diffusionless case (Pe= ∞), as shown
in figures 2(a)–2(d) by the black solid lines. Hence, in the diffusionless case, very
short-time-horizon optimal protocols (ν = 1, 2) are indeed feasible and as efficient as
the protocols optimized over longer time horizons. By comparing the black solid and
dash-dotted lines in figures 2(a)–2(d), it is clear that the optimized protocols αK (τ, ν)
(black solid line) are substantially more mixing-efficient than the periodic protocol
αP (τ ) (black dash-dotted) over the entire length of the simulation. In particular, at
final time T , the values of the mix-norm induced by the optimized protocols αK (τ, ν)
are about a factor 1/6 smaller than the value induced by the periodic protocol αP (τ ).

All the protocols αD(τ, ν; Pe) are remarkably more mixing efficient than the periodic
protocol αP (τ ) for both values of Pe considered. Furthermore, the mixing efficiency
of the protocols αD(τ, ν; Pe) with respect to the protocol αP (τ ), at corresponding Pe
values, is substantially better than the mixing efficiency of the protocol αK (τ, ν) with
respect to the protocol αP (τ ) at Pe= ∞. Contrary to the purely advective case, in the
advective–diffusive case the mixing efficiency depends on the optimization horizon
selected. At Pe= 5 × 104, the most mixing-efficient is the protocol optimized over
the longest switching time horizon considered, ν = 8. In this case, at final time T ,
the value of the mix-norm induced by the optimized protocols αD(τ, ν; Pe) (green
dashed line) is about a factor 1/33 smaller than the value induced by the periodic
protocol αP (τ ) (green dash-dotted line). Quite surprisingly, at Pe= 104, the most
mixing-efficient is the protocol optimized for ν = 4. In this case, at final time T , the
value of the mix-norm induced by the optimized protocol αD(τ, ν; Pe) (red dash line)
is about a factor 1/75 smaller than the value induced by the periodic protocol αP (τ )
(red dashed-dotted line).

We assess the transportability of the protocol αK (τ, ν) from purely advective to
advective–diffusive flows in two steps. We first compare the green and red solid lines
with the black solid lines in figures 2(a)–2(d). In all cases the mixing efficiency of
the protocol αK (τ, ν) improves substantially in the presence of diffusion with respect
to the mixing efficiency of the same protocol in the absence of diffusion. Secondly,
for the case Pe = 5 × 104, we compare the green solid and dashed lines and, for the
case Pe = 104, we compare the red solid and dashed lines. In general, the protocols
αK (τ, ν) perform very well for all horizons and diffusivities even with respect to the
protocols αD(τ, ν; Pe). Quite surprisingly, for the shortest switching time horizon,
ν =1, the protocol αK (τ, ν), obtained using KbOpt, performs even better than the
protocols αD(τ, ν; Pe) optimized using ADbOpt at Pe =104 and 5 × 104, respectively.
The best performance, however, is obtained for the switching time horizon ν =8,
where the value of the mix-norm induced by the protocol αK (τ, ν) at Pe = 5 × 104
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Figure 3. Snapshots at time t = 4 of the concentration field φ stirred by the protocols αP (τ )
at Pe= ∞ (a), αK (τ, ν) at Pe = ∞ (b), αK (τ, ν) at Pe =104 (c), and αD(τ, ν; Pe) at Pe = 104 (d).
The protocols αK (τ, ν) and αD(τ, ν; Pe) have been optimized for switching time τ = 0.1 and
switching time horizon ν = 1.

(green solid line) is about a factor 1/28 smaller than the value induced by the periodic
protocol αP (τ ) (green dash-dotted line), while the value of the mix-norm induced by
the protocol αK (τ, ν) at Pe =104 (red solid line) is about a factor 1/30 smaller than
the value induced by the periodic protocol αP (τ ) (red dash-dotted line).

It is interesting to relate the value of the mix-norm to the geometry of the partially
mixed concentration field. Figure 3(a) shows the snapshot at time t = 4 of the structure
of the concentration field generated by the periodic protocol αP (τ ) in the diffusionless
case; the corresponding value of the mix-norm can be read from the black dash-dotted
line in figure 2(a). The stirring action of αP (τ ) induces the formation of swirl structures
in correspondence of the two large islands of regular motion which occupy the entire
flow domain. The characteristic size of the lamellae is of order one-tenth of the
characteristic length L. Figure 3(b) shows the snapshot at time t = 4 of the structure
of the concentration field generated by the protocol αK (τ, ν), optimized for τ = 0.1
and ν = 1, in the diffusionless case. The corresponding value of the mix-norm can be
read from the black solid line in figure 2(a). The comparison between figures 3(a)
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and 3(b) indicates that the protocol αK (τ, ν), obtained using KbOpt, is substantially
more mixing-efficient than the periodic protocol αP (τ ) because its stirring action
is able to induce much finer lamellar structures. Furthermore, the comparison of
the two concentration fields highlights the different deformation mechanisms which
characterize mixing in the regions of regular motion with respect to the chaotic region.
Specifically, the spiralling structure generated by the periodic protocol αP (τ ) suggests
that the overall effect of advection within the islands of regular motion closely mimics
the advection field induced by a vortex. Instead, the filamented structure generated by
the protocol αK (τ, ν) arises as a consequence of the recursive stretching and folding
of the advected concentration field. Under the optimized stretching and folding, the
average thickness of the lamellae decreases exponentially in time.

Figure 3(c) shows the snapshot at time t = 4 of the structure of the concentration
field generated by the protocol αK (τ, ν), obtained using KbOpt, in the presence of
diffusion (Pe= 104); the corresponding value of the mix-norm can be read from the
red solid line in figure 2(a). The comparison between figures 3(b) and 3(c) shows the
effect of molecular diffusion on the structure of the concentration field. Molecular
diffusion is most effective in regions where the average thickness of the lamellae is of
the same order of magnitude as the characteristic diffusion length. In these regions the
concentration field is perfectly mixed. Everywhere else, instead, the effect of molecular
diffusion results in a blurred structure with respect to the structure of the purely
advective case.

Figure 3(d) shows the snapshot at time t = 4 of the structure of the concentration
field generated by the protocol αD(τ, ν; Pe) optimized at Pe = 104, for τ = 0.1 and
ν =1, using ADbOpt. The corresponding value of the mix-norm can be read from
the red dashed curve in figure 2(a). The spatial structure of the concentration field
generated by the protocol αD(τ, ν; Pe) is, not surprisingly, different from the spatial
structure produced by the protocol αK (τ, ν) applied to the same diffusive case, because
the two protocols are different. Yet surprisingly, the performance of both protocols is
very similar. The range of values of the concentration field, detectable as black and
white intensities in figures 3(c) and 3(d), and the average striation thickness appear
to be very similar, as indicated by the close values of the mix-norm in the two cases
(see figure 2a, red solid and dashed lines).

For the switching time τ = 0.4, figure 4 shows the time evolution of the mix-norm
induced by the protocols optimized for ν = 1, 2, 4, which correspond to time horizons
0.4TK , 0.8TK , 1.6TK , respectively. The line types and colours used in figure 4 represent
the same quantities as in figure 2.

First of all, note that the mixing efficiency of the traditional periodic sine flow
protocol αP (τ ) for the purely advective case and the advective–diffusive cases at
Pe = 104 and Pe = 5×104 (black, green and red dash-dotted lines, respectively) shows
a modest improvement with respect to the case with switching time τ =0.1 (figure 2).
This is a consequence of the fact that at switching time τ = 0.4 (see figure 9b), the
protocol αP (τ ) induces a partially mixed flow, where the overall mixing efficiency
depends on how the chaotic region mediates the transport between the regions of
regular motion (Cerbelli et al. 2004).

Consistently with the previous case (τ = 0.1), all protocols αK (τ, ν), optimized for
ν =1, 2, 4, induce nearly the same time evolution of the mix-norm in the diffusionless
case (Pe = ∞), as shown in figures 4(a)–4(c) by the black solid lines. This result
confirms that, in the diffusionless case, short-time-horizon optimal protocols (ν =1,
2) are indeed feasible and as efficient as the protocol optimized over the longer time
horizon (ν = 4). At final time T , the values of the mix-norm induced by the optimized
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Figure 4. Time evolution of the mix-norm µφ(t) induced by the protocols αP (τ ), αK (τ, ν)
and αD(τ, ν; Pe) starting from the same initial condition. The protocols αK and αD have been
optimized for the switching time τ = 0.4 and different time switching horizons ν = 1(a), 2(b),
4(c). The line types identify the protocols: αP (dash-dotted), αK (solid) and αD (dashed). The
colours identify the value of Pe: Pe = 104 (red), Pe = 5 × 104 (green) and Pe = ∞ (black).

protocols αK (τ, ν) are about a factor 1/5 smaller than the value induced by the peri-
odic protocol αP (τ ) (compare the black solid and dash-dotted lines in figures 4a–4c).

Again, consistently with the previous case (τ = 0.1), all the protocols αD(τ, ν; Pe)
(green and red dashed lines) are remarkably more mixing-efficient than the periodic
protocol αP (τ ) (green and red dash-dotted lines) for both values of Pe considered.
Contrary to the previous case (τ =0.1), however, all protocols αD(τ, ν; Pe) present
nearly the same mixing efficiency at both Pe values. At Pe =5 × 104, the protocol
optimized for ν =4 is slightly more mixing-efficient than the other protocols. In this
case, at final time T , the value of the mix-norm induced by the optimized protocol
αD(τ, ν; Pe) (green dashed line) is about a factor 1/15 smaller than the value induced
by the periodic protocol αP (τ ) (green dash-dotted line). Instead, at Pe = 104, the
protocol optimized for ν = 1 is slightly more mixing-efficient than the other protocols.
In this case, at final time T , the value of the mix-norm induced by the optimized
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protocol αD(τ, ν; Pe) (red dashed line) is about a factor 1/17 smaller than the value
induced by the periodic protocol αP (τ ) (red dash-dotted line).

As before, we assess the transportability of the protocol αK (τ, ν) from purely
advective to advective–diffusive flows in two steps. We first compare the red and
green solid lines with the black solid lines in figures 4(a)–4(c). Consistently with
the previous case (τ = 0.1), the mixing efficiency of the protocol αK (τ, ν) improves
substantially in the presence of diffusion. Secondly, for the case Pe = 5 × 104, we
compare the green solid lines with the green dashed lines. In this case the mixing
efficiency of the protocol αK (τ, ν) is nearly the same as the efficiency of the protocol
αD(τ, ν; Pe) optimized at Pe = 5 × 104. For the case Pe = 104, we compare the red
solid lines with the red dashed lines. In this case the mixing efficiency of the protocols
αK (τ, ν) increases with increasing ν with respect to the efficiency of the protocols
αD(τ, ν; Pe). In particular, for ν = 4, at final time T , the value of the mix-norm
induced by the protocol αK (τ, ν) (red solid line) is the lowest, about a factor 1/25
smaller than the value induced by the periodic protocol αP (τ ) (red dash-dotted line).
These results confirm that the protocols optimized using KbOpt can be effectively
applied to flows with small molecular diffusivity.

The effect of the optimization on mixing efficiency is again better understood
through the analysis of the geometrical structure of the mixture. Figure 5(a) shows
the snapshot at time t = 4 of the structure of the concentration field generated by
the periodic protocol αP (τ ) in the diffusionless case; the corresponding value of the
mix-norm can be read from the black dash-dotted line in figure 4(a). The stirring
action of αP (τ ) induces the formation of a partially mixed concentration field in
which four unmixed regions, two white and two black, can be easily identified. These
regions correspond to the islands of regular motion generated by the periodic protocol
αP (τ ): see figure 9(b). These unmixed regions are surrounded by a mixture with much
finer lamellar structure than the lamellar structure induced by the protocol αP (τ )
at switching time τ = 0.1: see figure 3(a). The difference between the geometrical
structure of the mixtures at switching time τ = 0.1 and τ =0.4 is responsible for the
difference in the corresponding mix-norm values.

Figure 5(b) shows the snapshot at time t = 4 of the structure of the concentration
field generated by the protocol αK (τ, ν), optimized for τ = 0.4 and ν = 1, in the
diffusionless case. The corresponding value of the mix-norm can be read from the
black solid line in figure 4(a). The comparison between figures 5(a) and 5(b) indicates
that the protocol αK (τ, ν), obtained using KbOpt, has been able to produce a
more homogeneous mixture by inducing a recursive stretching and folding of the
concentration field over the entire domain. Note that the protocol αK (τ, ν) at switching
time τ =0.4 (figure 5b) is slightly less efficient than the protocol αK (τ, ν) at switching
time τ =0.1 (figure 3b), as indicated by a slightly higher value of the mix-norm.

Figure 5(c) shows the snapshot at time t = 4 of the structure of the concentration
field generated by the protocol αK (τ, ν), obtained using KbOpt, in the presence of
diffusion (Pe = 104); the corresponding value of the mix-norm can be read from the
red solid line in figure 4(a). The comparison between figures 5(b) and 5(c) shows the
effect of molecular diffusion on the structure of the concentration field. As before,
the effect of molecular diffusion is to blur the geometrical structures present in the
purely advective case.

Figure 5(d) shows the snapshot at time t = 4 of the structure of the concentration
field generated by the protocol αD(τ, ν; Pe), obtained using ADbOpt at Pe =104;
the corresponding value of the mix-norm can be read from the red dashed line in
figure 4(a). Since the protocols αD(τ, ν; Pe) and αK (τ, ν) are different, the spatial
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Figure 5. Snapshots at time t = 4 of the concentration field φ stirred by the protocols αP (τ )
at Pe = ∞ (a), αK (τ, ν) at Pe = ∞ (b), αK (τ, ν) at Pe =104 (c), and αD(τ, ν; Pe) at Pe = 104

(d). The protocols αK (τ, ν) and αD(τ, ν; Pe) have been optimized for switching time τ = 0.4
and switching time horizon ν = 1.

structures they induce are also different. However, as before, the performance of both
protocols is nearly the same. The range of values of the concentration field, detectable
as black and white intensities in figure 5(c) and 5(d), and the average striation
thickness appear very similar, as indicated by the close values of the mix-norm in the
two cases (see figure 4a).

For switching time τ = 0.8, figure 6 shows the time evolution of the mix-norm
induced by the protocols optimized for ν = 1, 2, which correspond to time horizons
0.8 TK and 1.6 TK , respectively. The line types and colours used in figure 6 represent
the same quantities as in figure 2, but for the advection–diffusion case we show only
the results related to the case Pe = 104.

The switching time τ =0.8 represents a challenge for the optimized protocols
because, for this switching time, the traditional periodic sine flow protocol αP (τ )
induces a globally chaotic flow. This property reflects positively on the mixing
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Figure 6. Time evolution of the mix-norm µφ(t) induced by the protocols αP (τ ), αK (τ, ν)
and αD(τ, ν; Pe) starting from the same initial condition. The protocols αK and αD have
been optimized for the switching time τ = 0.8 and different time switching horizons ν = 1(a),
2(b). The line types identify the protocols: αP (dash-dotted), αK (solid) and αD (dashed). The
colours identify the value of Pe: Pe = 104 (red) and Pe = ∞ (black).

efficiency of the protocol αP (τ ) in the purely advective case and advective–diffusive
case at Pe = 104 (black and red dash-dotted lines), respectively. In fact, the time
evolution of the mix-norm shows a remarkable improvement of the mixing efficiency
of αP (τ ) with respect to the cases with switching times τ = 0.1 and 0.4.

Consistently with the previous cases (τ = 0.1, 0.4), all protocols αK (τ, ν), optimized
for ν = 1, 2, induce nearly the same time evolution of the mix-norm in the diffusionless
case (Pe = ∞), as shown in figures 6(a)–6(b) by the black solid lines. It is remarkable
that, in the diffusionless case, these protocols have a better mixing efficiency of the
globally chaotic periodic protocol αP (τ ) (black dash-dotted lines). This result clearly
confirms that, in the diffusionless case, short-time-horizon optimal protocols (ν = 1)
are indeed feasible and as efficient as the protocol optimized over the longer time
horizon (ν = 2).

The mixing efficiency of the αD(τ, ν; Pe) optimized at Pe = 104 (red dashed lines
in figures 6a–6b) further confirms that the short-horizon optimal protocols are more
efficient than the globally chaotic periodic protocol αP (τ ) (red dash-dotted lines in
figures 6a–6b).

Transportability in this case can be easily verified. In fact the protocols αK (τ, ν)
and αD(τ, ν; Pe) share the first eight segments in the case ν = 1 and are identical in
the case ν = 2 (compare red solid and dashed lines in figures 6a–6b).

3.3. Robustness and applicability of the results

Two were the main results presented in the previous subsection. The first result is
the substantial mixing efficiency of short-time-horizon optimal protocols with respect
to periodic protocols. Especially remarkable is the mixing efficiency of the protocols
optimized for very short time horizons, e.g. τ = 0.1, ν = 1, 2. The second result is the
robust transportability of short-time-horizon optimal protocols, designed for purely
advective flows using KbOpt, to flows with small diffusivity, i.e. Pe � 104.
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In order to assess conclusively the feasibility and mixing efficiency of very short-
time-horizon optimal mixing protocols, it is important to characterize the effects of
the choice of the switching time horizon ν and switching time τ on the outcome of
the optimization procedure. The assessment can be accomplished in two steps: first,
by analysing a representative set of cases generated by holding the time horizon τν

fixed while varying the switching time τ ; second, by analysing a representative set
of cases generated by holding the switching τ fixed while varying the switching time
horizon ν.

Figure 4 shows, quite surprisingly, that the mixing enhancement obtained for
switching time τ = 0.4 by the optimized protocols αK (τ, ν) and αD(τ, ν; Pe) with
respect the periodic protocol αP (τ ) is, for all the Pe values, less pronounced than
the corresponding enhancement obtained for switching time τ = 0.1 (see figure 2). To
explain this seemingly counter-intuitive result we compare figure 4(a) with figure 2(c),
which have the same time horizon 0.4TK , and figure 4(b) with figure 2(d), which have
the same time horizon 0.8TK . For the purely advective case, the black solid curves show
that the mixing efficiency of the protocol αK (τ, ν), optimized for τ =0.1 and ν =4, 8,
is slightly better than the efficiency of the protocol αK (τ, ν) optimized for τ = 0.4 and
ν = 1, 2. For the advective-diffusive case, the green and red dashed curves show that
the mixing efficiency of the protocol αD(τ, ν; Pe) optimized for τ =0.1 and ν = 4, 8 is
definitively better than the efficiency of the protocol αD(τ, ν; Pe) optimized for τ = 0.4
and ν = 1, 2 for both values of diffusivity. Since the only difference between the two sets
of data is the number of times the velocity field has been switched within a given time
horizon, this comparison indicates that, for a given horizon, it is better to optimize a
protocol choosing a switching time which is a sub-multiple of the time horizon.

Figure 7 shows the values of the mix-norm induced by the protocol αD(τ, ν; Pe)
optimized for τ = 0.1, ν = 1, 2, 4, 8, and Pe = 103 (◦), 104 (�), 5 × 104 (
), ∞ (�) (the
dotted linear interpolants have been added to facilitate the interpretation of the plot).
On the one hand, the curves show that as Pe decreases, the protocols αD(τ, ν; Pe)
optimized over longer switching time horizons present the best mixing efficiency.
On the other hand, the curves show that the improvement in mixing efficiency
is not substantial and decreases as Pe increases. In other words, the protocols
αD(τ, ν; Pe) optimized over very short switching time horizons are feasible and
competitively efficient with respect to protocols optimized over longer time horizons
and, consequently, appealing for on-line optimization of mixing processes.
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Figure 8. Time evolution of the mix-norm µφ(t) produced by the protocols αK (τ, ν) and
αD(τ, ν; Pe) optimized for the switching time horizon ν = 1 and switching time τ = 0.4. Solid
line: protocol αK (τ, ν), Pe = 5×103; Dash-dotted line: protocol αK (τ, ν), Pe = 103; ◦, protocol
αD(τ, ν; Pe), Pe = 5 × 103; �; protocol αD(τ, ν; Pe), Pe = 103.

The transportability of the protocols αK (τ, ν), optimized using KbOpt, to diffusive
systems is bound to deteriorate as molecular diffusion increases, i.e. as Pe decreases. In
particular, for Pe < 104, protocols derived using KbOpt and ADbOpt could produce
significantly different results. For example, figure 8 shows the time evolution of the
mix-norm induced by these two types of protocols when optimized for ν =1 and
τ = 0.4. The solid and dash-dotted lines show the mixing efficiency of the protocol
αK (τ, ν), obtained using KbOpt, when applied to the advective–diffusive cases at
Pe = 103 and Pe = 5 × 103, respectively. The triangles (�) and circles (�) show the
mixing efficiency of the protocols αD(τ, ν; Pe), obtained using ADbOpt, at Pe = 103

and Pe = 5 × 103, respectively. At both Pe values, the trend of the mixing efficiency
of the protocols αK (τ, ν) and αD(τ, ν; Pe) is similar. Over short time scales (t � 2),
the mixing efficiency of the protocols αK (τ, ν) and αD(τ, ν; Pe) is practically identical,
even at such relatively small Pe values of the order of 103. This is not surprising,
since the early stages of a mixing process are essentially controlled by advection
(Giona et al. 2002). However, for t > 3, the mixing efficiency of the protocols
αD(τ, ν; Pe) improves substantially with respect to the mixing efficiency of the
protocols αK (τ, ν). Note, however, that the difference between the mixing efficiencies
of the protocols obtained using KbOpt and ADbOpt decreases monotonically as Pe
increases. We should conclude that the transportability of the protocols obtained
using KbOpt becomes less robust at values of Pe between Pe = 5 × 103 and
Pe = 104. For Pe � 5 × 103, on-line optimization over very short time horizons could
still be implemented, at a higher computational cost, directly using the ADbOpt
procedure.

The robustness of the results presented indicates that the short-time-horizon
optimization technique presented in this article could be used to optimize mixing
devices in which mixing is achieved through the switching of two or more steady
flows, such as in cavity flows or in electrokinetic mixers. The method proposed
could be implemented both off-line and on-line. The off-line implementation, the
simplest, can be used to improve any mixing device for which the stirring velocity
field can be closely approximated by blinking a set of steady state solutions to the
Navier–Stokes equations. In this case, the short-time-horizon optimization follows
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literally the procedure presented in this article for the sine flow. The result of the
off-line optimization is a sub-optimal protocol which can be applied to the mixing
device for better performance. The on-line implementation of the short-time-horizon
optimization should take place during the evolution of the mixing process itself. This
case is limited by the practical feasibility of measuring on-line the pointwise state of
a mixture, i.e. the concentration of the advecting–diffusing scalar field. This practical
problem is not peculiar to the short-time-horizon optimization, but it is shared by any
method aimed at optimizing mixing performance simultaneously with the evolution
of the mixing process itself.

4. Properties of the optimized protocols
In this section, we provide an interpretation of the results obtained so far in terms of

the asymptotic properties of the optimized protocols, both in the pure advection and
in the advection–diffusion cases. In particular, we quantify the mixing efficiency of the
optimized protocols using the Lyapunov exponents and Poincaré sections for the pure
advection case and the eigenvalue–eigenfunction spectra for the advection–diffusion
case.

In order to recast the short-time-horizon mixing problem within a setting suitable
for asymptotic analysis, we introduce the periodic continued protocols πK (τ, ν) and
πD(τ, ν; Pe) of the optimized protocols αK (τ, ν) and αD(τ, ν; Pe), respectively. The
periodic continued protocols πK (τ, ν) and πD(τ, ν; Pe) are defined as the time-periodic
protocols of period T obtained by repeating the sequences αK (τ, ν) and αD(τ, ν; Pe)
an infinite number of times, respectively. For completeness of notation, we also define
in the same terms the periodic continuation πP (τ ) of the periodic protocol αP (τ ).

4.1. Kinematic analysis

We recall that a Poincaré section is obtained by superimposing onto the same plot
the positions at times t = nT , n= 0, 1, 2, . . . , of a few initial conditions that evolve
under the periodically continued protocols. Figures 9(a) and 9(b) depict the Poincaré
section associated with the protocol πP (τ =0.1) and πP (τ = 0.4), while figures 9(c)
and 9(d) present the Poincaré section associated with the protocol πK (τ, ν) optimized
for τ = 0.1, ν =1 and τ = 0.4, ν = 1, respectively (T = 8 for all the computations).
Figure 9(a) was obtained by selecting and evolving in time 18 initial conditions,
spanning a parallel and a meridian of the torus, in order to characterize the structure
of the regions of regular motion. In figures 9(b)–9(d), the chaotic region was obtained
by selecting and evolving in time a single initial condition located near the midpoint of
the square (1/2, 1/2). In figure 9(b), the four egg-shaped regions are islands of regular
motion.

The Poincaré sections (figures 9c and 9d) associated with the protocols πK (τ, ν) show
that the stirring action of the periodically continued protocols, obtained using KbOpt,
generates flows that are globally chaotic. We verified that all the protocols considered
in this study, obtained using ADbOpt or KbOpt, induce the same qualitative globally
chaotic structure of the Poincaré sections as in figures 9(c) and 9(d).

While the Poincaré section provides a visually qualitative assessment of the
dynamics induced by the stirring action of the protocols, a quantitative comparison
between the mixing efficiency of the different protocols can be obtained by
computing the Lyapunov exponent ΛL. The exponent ΛL is defined as the limit
ΛL = limn → ∞(1/nT ) log(||ln||/|l0||), where the vector ln is the nth image of an initial
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Figure 9. Poincaré sections of the periodically continued protocols: (a) πP (τ = 0.1);
(b) πP (τ =0.4); (c) πK (τ = 0.1, ν = 1); (d) πK (τ = 0.4, ν =1).

vector l0 attached to a generic point of the chaotic region that evolves under the
differential, i.e. the Jacobian matrix, of the Poincaré stroboscopic map.

Figure 10(a) shows the Lyapunov exponent for all the optimal protocols presented
in this article with switching time τ = 0.4. The data show that all of the optimized
protocols have comparable values of ΛL, the only exception being the protocol
denoted by I, which represents the periodic case πP (τ ), therefore not optimized.

Figure 10(b) shows the inverse of the mix-norm at the final optimization time T = 8
for the same protocols shown in figure 10(a). The higher the value of [µφ(T )]−1,
the higher is the mixing efficiency of the associated protocol. Note how the periodic
protocol, denoted I, is characterized by the lowest values of both the Lyapunov
exponent and [µφ(T )]−1.

The comparison of figures 10(a) and 10(b) indicates that the highest mixing efficiency
in terms of mix-norm value at T = 8 does not coincide with the highest asymptotic
value of the Lyapunov exponent of the periodically continued protocol. In other
words, the existence of a globally chaotic condition, i.e. the existence of a Lebesgue
ergodic trajectory characterized by a positive Lyapunov exponent, does not yield
direct quantitative information about mixing efficiency at short times associated
with an assigned protocol and a given initial condition. However, the information
conveyed by the value of the Lyapunov exponent has important implications for
the transportability of the protocols πK . In fact, the existence of a globally chaotic
condition qualitatively guarantees the successful transportability of the protocols
αK (τ, ν), obtained using KbOpt, from purely advective to advective–diffusive flows
with small molecular diffusivity.
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Figure 10. (a) Lyapunov exponent of periodically continued protocols optimized for different
time switching horizons ν and fixed switching time τ = 0.4. (b) Inverse value of the mix-norm,
i.e. [µφ(T )]−1, at time T = 8 for the same protocols as in panel (a). Labelling of the protocols

is as follows: A, πD associated with ν = 10, Pe = 104; B, πK with ν = 10; C, πD with ν = 1,
Pe = 104; D, πK with ν = 1; E, πD with ν = 2, Pe = 104; F, πK with ν = 2; G, πD with ν = 4,
Pe = 104; H, πK with ν = 4; I, periodic protocol πP .

4.2. Homogenization properties of optimized protocols

To complement the kinematic analysis presented in the previous subsection, we
analyse the properties of the advection–diffusion operator associated with the periodic
continuations πK (τ, ν) of short-time-horizon optimal protocols αK (τ, ν) obtained
using KbOpt.

It can be shown that the mix-norm of the solution of the advection–diffusion
equation driven by the protocol πK (τ, ν) displays an asymptotic exponential decay of
the type

µφ(t) ∼ e−Λhom t , (4.1)

for any initial conditions possessing zero mean. Note that this is a property common
to all time-periodic flow systems evolving in a closed and bounded domain, such
as the sine flow considered in this study. Cerbelli et al. (2004) have shown that the
characteristic decay exponent Λhom can be written in terms of the absolute value of
the dominant eigenvalue λd of the Poincaré operator as follows: Λhom = − log |λd |/T .†

† Note that the Poincaré operator associated with the advection–diffusion equation in closed
systems possesses λ= 1 as the largest eigenvalue in absolute value. This eigenvalue is associated
with the constant eigenfunction. The eigenvalue λd is, strictly speaking, the second eigenvalue in
absolute value. However, it can be properly referred to as the dominant eigenvalue if one restricts
the problem to the functional space of square summable functions possessing zero mean.
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Figure 11. Characteristic decay exponent Λhom ; �, S-branch for the protocol πK (τ, ν) with
τ = 0.4 and ν =2; ◦, S-branch for the strictly periodic protocol πP (τ ) with τ = 0.8.

The characteristic decay exponent Λhom depends on the Péclet number. For high
Péclet numbers, the scaling of Λhom versus Pe is an indicator of the type of interaction
between the advection and diffusion mechanisms which sets up asymptotically. In
other words, the values and the asymptotic scaling of the dominant eigenvalue Λhom

provide important information about the mixing efficiency of the protocol and the
chaotic condition of the system, respectively (Cerbelli et al. 2004; Giona et al. 2004b).

The spectrum of the eigenvalues of the Poincaré operator associated with the
advection–diffusion equation driven by the protocol πK (τ, ν), or by the strictly periodic
protocol πP (τ ), possesses two main spectral branches (Cerbelli et al. 2004). These
branches are excited by initial conditions possessing a pure cosine (C-branch) or a
pure sine (S-branch) Fourier expansion, respectively. Since the initial condition (2.22)
considered throughout this article admits vanishing projection onto the C-branch of
the spectrum, we consider only the S-branch. Consequently, this branch corresponds
to the actual asymptotic decay rate of the concentration field obtained by stirring the
initial condition (2.22) with a protocol πK (τ, ν).

In order to characterize the type of asymptotic dynamics induced by the protocols
πK (τ, ν) when applied to the advection–diffusion equation, we analyse the power-law
relationship between the characteristic decay exponent Λhom and the Péclet number
Pe. The solid symbols in figure 11 show the behaviour of the characteristic decay
exponent Λhom as a function of the Péclet number for the S-branch of the spectrum
associated with the protocol πK (τ, ν) optimized for τ = 0.4 and ν =2. For brevity,
we analyse only this protocol, since the other optimized protocols discussed in the
previous subsections yield to qualitative analogous results. The solid symbols in figure
11 show that Λhom ∼ Pe0 for large Pe values, which indicates that the system is in
a globally chaotic condition for these large Pe values. This result further confirms
that the protocols αK (τ, ν) induce, once periodically continued, a globally chaotic
dynamics throughout the whole mixing space when applied to both purely advective
or advective–diffusive flow systems. Furthermore, these results explain the robust
transportability of the protocols αK (τ, ν) to flow systems with Pe � 5 × 103.

In order to characterize the relaxation toward the homogeneous condition of the
concentration field stirred by the protocol πK (τ, ν) when applied to the advection–
diffusion equation, we compare the values of the characteristic decay exponent Λhom

for the protocols πK (τ, ν) with the values of Λhom associated with the strictly periodic
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Figure 12. Lyapunov exponent ΛL (�) and topological entropy htop (�) versus the frequency
f =1/2τ associated with the family of strictly periodic protocols πP (τ ).

protocols πP (τ = 0.8). We choose πP (τ = 0.8) because a numerical analysis performed
on the periodic protocols πP (τ ) for τ ∈ [0, 1] (Cerbelli et al. 2004) showed that, for
τ = 0.8, not only is the kinematics globally chaotic, but also the advection–diffusion
equation driven by this protocol possesses the highest characteristic scaling exponent
Λhom of all periodic protocols (see figure 11, open symbols).

The quantitative values of Λhom for Pe � 5 × 103 characterize the relaxation of the
concentration field, stirred by the protocols πK (τ, ν), toward homogeneous condition.
Figure 11 shows that the optimized protocol πK (solid symbols) yields, for Pe > 104,
to values of Λhom  0.44, which are significantly greater than the values Λhom  0.33
produced by the strictly periodic protocol πP (τ =0.8) (open symbols). This result
indicates that the optimized protocol πK is significantly more mixing-efficient than
the protocol πP in the presence of diffusion for high Péclet numbers.

To summarize, the analysis of the homogenization properties of the short-time-
horizon optimal protocol πK (τ = 0.4, ν = 2), obtained using KbOpt, indicates that
such a protocol has a significantly better mixing efficiency and homogenization than
periodic protocols. This is essentially a consequence of the fact that the optimal
protocol πK induces, once periodically continued, globally chaotic dynamics faster
than the periodic protocols. These results are indeed very promising for practical
engineering applications.

Throughout this subsection we have considered only protocols obtained using
KbOpt, since the analysis of this case is more critical, because the role of diffusion,
which is explicitly accounted for in the ADbOpt, is to enhance mixing. However, we
have verified that analogous homogenization performance can be achieved by the
protocols obtained using ADbOpt.

4.3. Lyapunov exponents and power spectra of the optimized protocols

We complete the characterization of the short-time-horizon optimal protocols by
analysing and comparing the Lyapunov exponents and the frequency spectra of the
protocols πK (τ, ν) with the Lyapunov exponents and the frequency spectra of the
strictly periodic protocols πP (τ ).

Figure 12 shows the behaviour of the maximum Lyapunov exponent ΛL (solid
symbols) and the topological entropy htop (open symbols) associated with the periodic
protocols πP (τ ) versus the frequency f = 1/2τ of the stirring velocity field. In order
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to provide a fair comparison between flows possessing different frequencies, the data
depicted in figure 12 are the maximum Lyapunov exponents and the topological
entropies multiplied by the frequency f of the stirring velocity field. The topological
entropy provides the characteristic scaling exponent for the time evolution of the
length l(t) of a generic material line advected by the flow at time t , i.e. l(t) ∼ l(0)ehtop t

(Katok & Hasselblatt 1995). By definition, the topological entropy is always greater
than or at least equal to the Lyapunov exponent, i.e. htop � ΛL for all frequencies.

The periodic protocol πP (τ ) with the best mixing efficiency is the one which
produces the highest values of the maximum Lyapunov exponent and topological
entropy. From figure 12, it is easy to see that the periodic protocol πP (τ ) with the best
mixing performance is the one with frequency f  0.625 corresponding to a periodic
protocol with switching time τ  0.8. The stirring action of protocol πP (τ = 0.8) has
been shown to induce globally chaotic dynamics.

The results presented in figure 12 allow us to better understand why all protocols
αK (τ, ν) presented in this article have a better mixing efficiency than the periodic
protocols αP (τ ) (see figure 2 for τ =0.1, figure 4 for τ = 0.4, and figure 6 for
τ = 0.8). In order to leverage the results given in figure 12, we need to perform
a Fourier analysis in time of the optimal protocols αK (τ, ν). Given a flow protocol
αK (τ, ν) = {α1, α2, . . . , αN}, we compute the Fourier series of the step impulse function
α(t) associated with the sequence {αp}N

p = 1, i.e. α(t) = αp for (p − 1)τ � t <pτ ,
p = 1, . . . , N . Obviously, the impulse function for the protocol πK (τ, ν) is obtained
by periodically continuing the impulse function α(t) associated with the protocol
αK (τ, ν).

Figure 13 presents the impulse functions (a, c, e) and power spectra (b, d, f )
associated with the periodic protocol αP (τ = 0.8) (a, b), and with the protocols
αK (τ, ν) optimized for the switching time horizon ν = 1 and switching time τ = 0.4
(c, d), and for ν = 2 and τ = 0.4 (e, f ). Figure 13(b), which is used as a reference case,
presents the power spectrum of the globally chaotic periodic protocol αP (τ =0.8). The
spectrum is the typical spectrum of a square wave (see figure 13a) with a large spike
at the fundamental frequency, f = 0.625, and smaller spikes at the odd harmonics.
The two smaller spikes shown in figure 13(b) correspond to frequencies f =1.875 and
f = 3.125, respectively.

It is interesting to compare the spectra of the protocols αK (τ = 0.4, ν = 1)
(figure 13d) and αK (τ = 0.4, ν = 2) (figure 13f) with the spectrum of the periodic
protocol αP (τ = 0.8) (figure 13b). The two spectra are very different. The spectrum of
protocol αK (τ = 0.4, ν = 1) presents two broad peaks centred at frequencies f = 0.45
and 0.75, respectively. Unexpectedly, the spectrum goes to zero exactly at frequency
f = 0.625. The spectrum of protocol αK (τ = 0.4, ν = 2), instead, presents a small
peak at f = 0.25 and a dominant peak at f =0.625. Since in the diffusionless case
(compare figures 4 and 6) the mixing efficiencies of the protocols αK (τ = 0.4, ν = 1)
and αK (τ = 0.4, ν = 2) are nearly identical and better than the mixing efficiency of
the globally chaotic periodic protocol αP (τ =0.8), it follows that a protocol can be
globally chaotic without having a spectrum with a dominant peak centred near the
frequency f = 0.625. It is essential, instead, that the spectrum has highest-possible
frequency content in the range 0.4 � f � 1.2 where the Lyapunov exponent and
topological entropy have their highest values.

It is not surprising that the optimization procedure selects as a short-time-horizon
optimal protocol an aperiodic protocol: see figures 13(c) and 13(e). As noted by Liu
et al. (1994a), aperiodic protocols do not present periodic points and, consequently,
flows stirred by such protocols are free of islands of regular motion. However, given
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Figure 13. Impulse functions (a, c, e) and power spectra (b, d, f ) associated with the periodic
protocol αP (τ = 0.8) (a, b), and with the protocols αK (τ, ν) optimized for the switching time
horizon ν = 1 and switching time τ = 0.4 (c, d), and for ν = 2 and τ =0.4 (e, f ).

a final optimization time T and a switching time τ , there are 2N admissible protocols
(N = T/τ ), the large majority of which are aperiodic. Furthermore, as shown in
figure 1, there is a large percentage of poorly efficient protocols, most of which
are aperiodic. Hence, the outcome of the optimization procedure is not trivial. The
sequence of optimizations narrows down the initial pool of 2N admissible protocols
to the best performing one: a highly efficient aperiodic protocol which has a high-
frequency content in the range 0.4 � f � 1.2.
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The comparison between Lyapunov exponents, power spectrum and mixing
efficiency of the short time optimal mixing protocols αK (τ = 0.4, ν = 1),
αK (τ = 0.4, ν = 2) and the globally chaotic periodic protocol αP (τ = 0.8), allow us
to draw some important conclusions. The periodic protocol αP (τ = 0.8) has the
highest Lyapunov exponent, ΛL = 1.2, of all protocols analysed in this study. Based
on the value of the Lyapunov exponents, one could jump at the conclusion that the
periodic protocol αP (τ = 0.8) is the most mixing-efficient. However, figures 2, 4 and
6 clearly show that the periodic protocol αP (τ =0.8) has the worst mixing efficiency
among all short-time-horizon optimal mixing protocols both in the pure advection
and in the advection–diffusion cases. The difference in mixing efficiency is especially
large when the protocols optimized using KbOpt are used to stir initially segregated
mixture with small molecular diffusivity, i.e. Pe � 104. This is a further indication that
even globally chaotic protocols possessing almost identical values of the maximum
Lyapunov exponent may display substantially different mixing properties in the
presence of diffusion for Pe → ∞.

5. Conclusions
In this study, we considered the problem of deriving a computationally cost-effective

optimization procedure able to generate feasible, mixing-efficient and transportable
protocols. As a case study, we considered the optimization of mixing protocols for
a two-dimensional, piecewise steady, nonlinear flow, the sine flow, in both purely
advecting and advecting–diffusing cases. We used the mix-norm as the cost function
to be minimized by the optimization procedure. The mix-norm is a scalar variance
averaged over all the possible coarse graining of the flow domain, which provides an
overall measure of mixing efficiency for flows with or without molecular diffusivity.

We showed that the cost function possesses a complex structure of local minima
of nearly the same values and, consequently, that the problem possesses a large
number of sub-optimal protocols with nearly the same mixing efficiency as the
optimal protocol. Since the goal of this study is to provide an optimization procedure
for engineering applications, we proposed finding a sub-optimal protocol with a
sequence of short-time-horizon optimizations, which are computationally efficient.
This approach consists of subdividing the overall optimization interval T in sub-
intervals, or time horizons, and finding the optimal sub-protocol for each of these
sub-intervals. The sequence of optimal sub-protocols generates a sub-optimal protocol,
called the short-time-horizon optimal protocol, for the flow under consideration.

We compared the performance of the protocols αK (τ, ν) generated by the kinematic-
based optimization (KbOpt), i.e. the protocols obtained by minimizing the mix-norm
of the scalar field governed by the pure advection equation, with the performance of
the protocols αD(τ, ν; Pe) generated by the advection–diffusion-based optimization
(ADbOpt), i.e. the protocols obtained by minimizing the mix-norm of the scalar field
governed by the advection–diffusion equation.

We presented evidence of the feasibility, mixing efficiency and transportability of
short-time-horizon optimal protocols for the specific mixing measure used in this
study. We established the mixing efficiency of the protocols αK (τ, ν) and αD(τ, ν; Pe),
by comparing their performance against the performance of the traditional periodic
sine flow protocol αP (τ ). We established the transportability of protocols αK (τ, ν) to
flows with diffusivity, by comparing the time evolution of the mix-norm associated
with the optimal protocols αD(τ, ν; Pe) and αK (τ, ν) for the same Pe values.
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Two main results have been presented in this study. The first result is the substantial
mixing efficiency of short-time-horizon optimal protocols with respect to periodic
protocols. Especially remarkable is the mixing efficiency of the protocols optimized
for very short time horizons, e.g. τ = 0.1, ν =1, 2. The second result is the robust
transportability of short-time-horizon optimal protocols, designed for purely advective
flows using KbOpt, to flows with small diffusivity, i.e. Pe � 104.

We conclusively assessed the feasibility and mixing efficiency of very short-time-
horizon optimal mixing protocols by characterizing the effects of the choice of the
switching time horizon ν and switching time τ on the outcome of the optimization
procedure. Protocols optimized over very short time horizons are feasible and
competitively efficient with respect to protocols optimized over longer time horizons
and, consequently, appealing for on-line optimization of mixing processes. However,
for a given switching time horizon, it is better to optimize a protocol by choosing a
switching time which is a sub-multiple of the time horizon.

We also assessed that the transportability of the protocols obtained using KbOpt is
robust for Pe � 104. The transportability becomes less robust at values of Pe between
Pe = 5×103 and Pe = 104. Nevertheless, for Pe � 5×103, optimization over very short
time horizons could still be implemented, at a higher computational cost, directly
using the ADbOpt procedure.

We provided an interpretation of our results in terms of the asymptotic properties
of the optimized protocols both in the pure advection and in the advection–diffusion
cases. In particular, we quantified the mixing efficiency of the periodically continued
protocols using the Lyapunov exponents and Poincaré sections for the pure advection
case and the eigenvalue–eigenfunction spectra for the advection–diffusion case.

In order to recast the short-time-horizon mixing problem within a setting suitable
for asymptotic analysis, we introduced the concept of periodically continued protocols.
The periodic continued protocols are defined as the time-periodic protocol of period
T obtained by repeating the sequence αK (τ, ν) and αD(τ, ν; Pe) an infinite number of
times, respectively.

Our analysis demonstrated that the highest mixing efficiency in terms of mix-norm
value at the final optimization time does not coincide with the highest asymptotic
value of the Lyapunov exponent of the periodically continued protocol. In other
words, the existence of a globally chaotic condition, i.e. the existence of a Lebesgue
ergodic trajectory characterized by a positive Lyapunov exponent, does not yield
direct quantitative information about mixing efficiency at short times associated with
an assigned protocol and a given initial condition.

We showed, however, that the information conveyed by the value of the Lyapunov
exponent has important implications for the transportability of the protocols αK (τ, ν).
In fact, the existence of a globally chaotic condition for the periodically continued
protocol πK (τ, ν) qualitatively guarantees the successful transportability of the
protocols αK (τ, ν), obtained using KbOpt, from purely advective to advective–diffusive
flows with small molecular diffusivity.

The analysis of the homogenization properties of the short-time-horizon optimal
protocols πK (τ, ν), obtained using KbOpt, indicated that such protocols have a
significantly better mixing efficiency and homogenization than the strictly periodic
protocols πP (τ ). We showed that this is essentially a consequence of the fact that
the optimal protocol αK (τ, ν) induces, once periodically continued, a globally chaotic
dynamics faster than the periodic protocols.

The analysis of the power spectra of protocols αK (τ, ν) showed that a protocol
induces globally chaotic dynamics if its spectrum has the highest-possible frequency
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content in the range 0.4 � f � 1.2 where the Lyapunov exponent and topological
entropy of the periodic protocols πP (τ ) have their highest values.

The results obtained in this study indicate that the optimization over very short
time horizons could be used in principle as an on-line procedure for enhancing mixing
in a laboratory experiment and, in the future, in engineering applications. Work is
under way to extend our results to three-dimensional closed and open systems.

The authors wish to thank Dr Stefano Cerbelli for several valuable discussions
pertaining to this research. This work has been partially supported by NSERC under
grant RGPIN217169.
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